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Abstract. In the early 1930s W. O. Kermack and W. H. McCrea published

three papers in which they attempted to prove a result of E. T. Whittaker on

the solution of differential equations. In modern parlance, their key idea con-
sisted in using quantized contact transformations over an algebra of differential

operators. Although their papers do not seem to have had any impact, either

then or at any later time, the same ideas were independently developed in the
1960-80s in the framework of the theory of modules over rings of microdiffer-

ential operators. In this paper we describe the results of Kermack and McCrea
and discuss possible reasons why such promising papers had no impact on the

mathematics of the 20th century.
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1. Introduction

Among the ideas that made a deep impact on mathematics in the 1980s and
1990s we can certainly count the twin theories of differential and microdifferential
operators, jointly known as algebraic analysis. Their impact extended far and wide,
and spread through such areas as partial differential equations, representations of
algebraic groups, noncommutative ring theory, and combinatorics. Nor has their
influence waned, as a search of MathSciNet clearly shows.

The genesis of both theories is usually traced to the 1960s, when modules over
rings of differential operators were first systematically studied by M. Sato in Japan
and, independently, by J. Bernstein in the Soviet Union. These ideas were then
developed systematically by Sato, Bernstein, M. Kashiwara, Z. Mebhkout and many
other mathematicians. For more details see §9.2. However, 30 years earlier some of
the ideas that we now associate with algebraic analysis had already been introduced
in four papers of W. O. Kermack and W. H. McCrea. Published between 1931
and 1933, the papers were motivated by a ‘research lecture’ given by Sir Edmund
Whittaker in Edinburgh. In this lecture, whose content appeared in [43], Whittaker
proposed a theorem on the transformation of definite integrals which he used to
solve various differential equations. It turned out, however, that Whittaker’s proof
of this theorem was, in his own words, ‘defective’.

Whittaker’s audience included the chemist W. O. Kermack and the physicist W.
H. McCrea. In McCrea’s words [12, p. 421]

Kermack saw immediately that Whittaker’s ideas required in the
first place an algebra of operators of a novel sort. Within a day or
two he sketched his thoughts to me and we proceeded together to
develop them in four papers published soon afterwards.

This ‘novel algebra of operators’ turned out to be analogous to the algebra gener-
ated by the operators position and momentum in quantum mechanics, which had
been introduced by Dirac in 1926; see [13]. This is a noncommutative algebra, for
which they introduced ‘contact transformations’ like the ones used in Hamiltonian
dynamics [41, p. 288ff]. These transformations allowed them to prove Whittaker’s
theorem.
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In this paper we recount the history of the work on differential operators by
Kermack and McCrea and relate it to modern work on rings of differential opera-
tors. Section 2 contains short biographies of the three main characters of our story:
Whittaker, Kermack and McCrea. These do not cover in detail the whole life of
each of these scientists, but only take the story up to the time when the work dis-
cussed here was done. In section 3 we review the basics of contact transformations,
both the 1930s approach as expounded in Whittaker’s Analytical Dynamics [41],
and its modern presentation. The analysis of the work of Whittaker, Kermack and
McCrea on differential equations begins in section 4, with a description of Whit-
taker’s seminar in Edinburgh, where his results on integration were first presented
to an audience that included both Kermack and McCrea. The next sections contain
a presentation of six different papers. The first, by Whittaker, states his integra-
tion theorem and gives several examples; this is followed by two substantial papers,
jointly written by Kermack and McCrea, that give their proof of Whittaker’s the-
orem, based on noncommutative algebra. Of the last three papers, two develop
some collateral themes, while the very last one (written by McCrea alone) is an ex-
position of their method aimed at a more general audience. In the final section we
analyse some of the weak points of the theory introduced by Kermack and McCrea,
explain how they anticipated some key ideas of modern algebraic analysis, and dis-
cuss the possibility of this being a case of missed opportunity, in the terminology
of [15]. This section ends with a general conclusion which summarizes the main
points of the article. To simplify cross referencing, equations will be numbered
sequentially throughout the paper, even when they are part of a quotation from a
primary source.

2. Dramatis personæ

In this section we give biographical data on the three main characters of our
story, beginning with the oldest and best known of the three.

2.1. E. T. Whittaker. Edmund Taylor Whittaker was born on 24 October 1873
in Southport. Whittaker was not very strong as a child, and his mother took care
of his early education. It was only when he was eleven years old that he entered
Manchester Grammar School, where he was on the classical side, with more than
three-fifths of his time taken up with Latin and Greek. While the study was purely
linguistic, he did very well; however, his lack of interest in poetry and drama led
to a falling-off in the upper forms. In order to escape that he elected to specialize
in mathematics.

In December, 1891 Whittaker obtained a scholarship to Trinity College, Cam-
bridge, and in 1895 graduated as second wrangler, being beaten to the first place by
T. J. l’A. Bromwich. The next year he was elected a Fellow of Trinity and was put
on the staff. Although Whittaker’s early interests where in applied mathematics,
the work for which he was awarded the First Smith Prize in 1897 dealt with uniform
functions, a theme of pure mathematics.

Among the courses he taught in Cambridge was the one on complex function
theory which would later become the basis for Whittaker’s first book A Course of
Modern Analysis; [42]. Although the book is often called ‘Whittaker and Watson’,
the first edition, published in 1902, was a solo effort; see [3]. Watson’s collaboration
began with the second edition, which appeared in 1915, and it is thanks to him
that this edition included topics like Riemann integration and the zeta function.
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Beside Watson himself, many well-known mathematicians attended Whittaker’s
Cambridge lectures, among them G. H. Hardy, J. E. Littlewood and H. W. Turnbull,
as well as the astronomers J. H. Jeans and A. S. Eddington.

Whittaker remained in Cambridge until 1906, when he moved to Dublin to take
the post of Royal Astronomer for Ireland. At the same time he was appointed
professor of astronomy at the University of Dublin. By this time he had already
been elected a fellow of the Royal Society. Despite the title of his chair, Whittaker
recognized that he was more of a mathematician than an astronomer, his talents
being in the line of developing the sort of mathematics that would be useful to
astronomers; [3]. In 1912, Whittaker moved to the University of Edinburgh where
he had been elected professor of mathematics and he stayed there for the next 35
years, by which time he had established a research school and founded (in 1914)
what may have been the first university mathematical laboratory.

Whittaker was awarded many prizes, among them the Sylvester Medal (1931)
and the Copley Medal (1956) by the Royal Society and he served as president of both
the Edinburgh Mathematical Society (1939-1944) and the London Mathematical
Society (1928-1929). He died on 24 March 1956. For more details see [31].

2.2. W. O. Kermack. Of the three main characters in our story, Kermack is
surely the least known among mathematicians; and this is not at all surprising, for
he was an experimental chemist.

William Ogilvy Kermack was born on 26 April 1898 in Kirriemuir, Scotland; the
birthplace of J. M. Barrie. Actually, Barrie’s first novels are based on stories that
his mother told him about Kirriemuir, which is called ‘Trums’ in the novels.

On the death of his mother in 1904, Kermack was brought up by his father’s sis-
ter. At the age of five he entered Webster’s Seminary, a local school that provided
primary and secondary education. At this school he was introduced to mathemat-
ics, mainly by the headmaster Thomas Pullar, who took him as far as coordinate
geometry and conics, as well as topics of mixed mathematics like elementary dy-
namics and hydrostatics.

Kermack entered Aberdeen University in 1914 where he graduated M.A. four
years later, with First Class Honours in Mathematics and Natural Philosophy, and
B.Sc. with special Distinction in Mathematics, Natural Philosophy and Chemistry,
having been awarded several prizes. He was taught mathematics at Aberdeen by
J. H. Grace, who did a great deal to stimulate his interest in it.

After a few years at the Dyson Perrins Laboratory in Oxford, Kermack was
appointed in charge of the Chemical Section of the Royal College of Physicians
Laboratory in Edinburgh. This was in 1921. Three years later, tragedy struck.
While he was alone at the laboratory, the preparation on which he was working
exploded, driving caustic substances into his eyes and rendering him totally blind
for life. Although he was only 26 at the time, Kermack was not put down by his
blindness. Instead, he re-organised his life to meet his new needs, in which he was
helped by friends and colleagues; with the Department of Scientific and Industrial
Research and the Carnegie Trust providing funds for a special assistant.

Kermack would remain in Edinburgh until 1949, when he moved to Aberdeen
to take the Macleaod-Smith Chair of Biological Chemistry, from which he retired
in 1968. He died suddenly, two years later, while working at his desk. Most of
Kermack’s work is in the area of biochemistry. However, he kept his interest in
mathematics and was an active member of the Edinburgh Mathematical Society
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during his stay in that city. Beside the work on differential equations that we will
discuss here, Kermack’s mathematical papers dealt also with Riemannian geome-
try, relativistic cosmology and statistics. Kermack was elected to the Royal Society
in 1944. His obituary in the Biographical Memoirs [12] provides an extensive bib-
liography, as well as a detailed account of his chemical work.

2.3. W. H. McCrea. Although he is best known as an astronomer, Sir William
Hunter McCrea held positions in mathematics departments for many years. Born
in Dublin in 1904, McCrea was brought up in Derbyshire, after his family moved
to England when he was two years old. He attended Chesterfield Grammar School
and won an Entrance Scholarship to Trinity College Cambridge in 1923. While
working for the Mathematical Tripos, he found time to obtain a first class B.Sc.
with honours in mathematics from London University. McCrea graduated from
Cambridge in 1926, and immediately began to work for a Ph.D. there under the
supervision of R. H. Fowler. In 1928 he won a Rouse Ball Traveling Studentship
that took him to Göttingen for the year 1928-29.

Back from Göttingen, McCrea took his first teaching position in 1930 as Lecturer
in Mathematics at the University of Edinburgh. He spent two years in Edinburgh,
during which the work that we report in this paper was undertaken. In 1932 he
moved to Imperial College, London, as Reader in Mathematics, where he stayed
until 1936, then moving to a Chair of Mathematics at Queen’s University in Belfast.
During the war McCrea worked at the the Operational Research Group, after which
he took over as Professor and Head at the Mathematics Department, Royal Hol-
loway College. It was only in 1966 that he had his first post in Astronomy, as
founding Research Professor in the Astronomy Centre of the recently opened Uni-
versity of Sussex.

McCrea published some 280 scientific papers and six books. Although many
of his early papers are on topics of physics and mathematics, his interests gradu-
ally focused on the application of theoretical physics to astronomy. Indeed, he is
probably best known for his work on stellar atmospheres, relativity and cosmology.

McCrea was elected a Fellow of the Royal Astronomical Society in 1929, served
as President between 1961 and 1963 and was awarded its Gold Medal in 1976. He
was elected to a Fellowship of the Royal Society of London in 1952.

3. Contact transformations

As we saw at the introduction, the work of Kermack and McCrea on the appli-
cation of rings of differential operators was prompted by Whittaker’s idea of using
contact transformations in order to solve differential equations. Actually, Whit-
taker’s interest in these transformations predates this paper by many years, as we
shall see in this section, where we also introduce the basic facts of the theory of
contact transformations.

3.1. Whittaker’s ‘Analytical Dynamics’. As we saw in §2.1, Whittaker lec-
tured in Cambridge between 1896 and 1906. At this time he wrote several books,
the best known of which is probably his very first book Modern Analysis, which
has already been mentioned in §2.1. Another book written at this time, and pub-
lished in 1904, had the long title A treatise on the analytical dynamics of particles
and rigid bodies, with an introduction to the problem of three bodies; nowadays it
is known simply as Whittaker’s Analytical Dynamics. Although mainly based on
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the notes of his Cambridge lectures, it also included material from the Report on
the progress of the solution of the problem of three bodies, that he had prepared
for the British Association for the Advancement of Science in 1899. At the time it
appeared, Analytical Dynamics was, according to [32],

the first systematic account to be given in English of general dy-
namical theory, i.e. the superbly beautiful theory which springs
from Hamilton’s equations and which has turned out to be of such
fundamental importance for the development of quantum mechan-
ics.

In its more than 450 pages, Analytical Dynamics ranges from the more ele-
mentary concepts of kinematics and dynamics, through specific problems that are
completely soluble, to Hamiltonian dynamics and celestial mechanics. The chapters
that will concern us here are those that deal with Hamiltonian mechanics, specially
what he calls the ‘transformation theory of dynamics’. This chapter played a deci-
sive rôle in the history of modern physics by inspiring Dirac’s approach to quantum
mechanics; see [28, p. 17].

3.2. Contact transformations. Let us begin by reviewing the fundamental con-
cepts of Hamiltonian mechanics in the terminology of Whittaker’s Analytical Dy-
namics; see [43, §109, pp. 263-65].

Consider a conservative time independent (holonomic) dynamical system with
coordinate functions q1, . . . , qn and let L(q1, . . . , qn, q̇1, . . . , q̇n) be its kinetic poten-
tial. Writing the equations of motion in Lagrangian form we obtain,

d

dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= 0 for r = 1, . . . n.

If we write

pr =
∂L

∂q̇r
then ṗr =

∂L

∂qr
where, as usual, the dot over a letter denotes the time derivative of the correspond-
ing function. Using δ for the increment of a function with respect to a small change
of its argument, we have

δL =

n∑
r=1

(
∂L

∂qr
δqr +

∂L

∂q̇r
δq̇r

)
which, can be rewritten in the form

δL = δ

n∑
r=1

pr q̇r +

n∑
r=1

(ṗrδqr − q̇rδpr);

so that

δ(L−
n∑

r=1

pr q̇r) =

n∑
r=1

(ṗrδqr − q̇rδpr). (3.1)

Denoting by H the quantity L−
∑n

r=1 pr q̇r, and equating terms on δqr and δpr on
both sides of (3.1) we find that

dqr
dt

=
∂H

∂pr
and

dpr
dt

= −∂H
∂qr

, for r = 1, . . . , n. (3.2)

In present day terminology, H is the Hamiltonian function and (3.2) the Hamilton-
ian equations of the given system. Thus, in this framework, the equations of the
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system are described in terms of 2n variables, the n position variables q1, . . . , qn
and the n conjugate momentum variables p1, . . . , pn.

Suppose now that we have two sets of 2n variables, denoted by

(q1, . . . , qn, p1, . . . , pn) and (Q1, . . . , Qn, Q1, . . . , Qn),

the second of which is defined in terms of the first. In other words, each Q and P is
a function of the qs and ps. The change of variables from the capitalised variables
to the noncapitalised ones defined by the formulae for the Qs and P s is a contact
transformation if the differential form

n∑
r=1

PrdQr − prdqr,

when written in terms of the qs and ps is the differential of a function

W = W (q1, . . . , qn, p1, . . . , pn).

Take, for instance,

Q = (2q)1/2ek cos(p) and P = (2q)1/2e−k sin(p); (3.3)

see [43, Example 1, p. 293]. Since

PdQ = (−(2q)−1/2 cos(p))dq − ((2q)1/2 sin(p))dp

we have that PdQ − pdq = dW for W = q sin(p) cos(p) − qp. Hence the formulae
(3.3) define a contact transformation. This article of Analytical Dynamics ends
with an argument purporting to prove that if the sets of variables q and Q are
independent, then there exists a function W1(q1, . . . , qn, Q1, . . . , Qn), such that

Pr =
∂W1

∂Qr
and pr = −∂W1

∂qr
. (3.4)

The function W1 is called a generating function of the corresponding contact trans-
formation. For a more accurate discussion of these functions see [2, p. 258ff].

In §131 of Analytical Dynamics the conditions under which the P s and Qs as
functions of q1, . . . , qn, p1, . . . , pn define a contact transformation are expressed in
terms of the Poisson bracket. If u and v are functions of these same variables, then
their Poisson bracket is

n∑
r=1

(
∂u

∂qr

∂v

∂pr
− ∂u

∂pr

∂v

∂qr

)
.

Although Whittaker writes (u, v) for this bracket, we will use the modern notation
{u, v} instead. The main theorem of §131 is stated as follows:

Now let (Q1, . . . , Qn, P1, . . . , Pn) denote 2n functions of 2n variables
(q1, . . . , qn, p1, . . . , pn); we shew that the conditions which must be
satisfied in order that the transformation from one set of variables
to the other may be a contact-transformation may be written in
the form

{Pi, Pj} = 0, {Qi, Qj} = 0 (i, j = 1, 2, . . . , n),

{Qi, Pj} = 0 (i, j = 1, 2, . . . , n; i 6= j),

{Qi, Pi} = 1 (i, j = 1, 2, . . . , n)
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Although Whittaker goes a lot deeper in his investigation of transformation
theory, this is essentially all we need from Analytical Dynamics. However, before
we move on, it is convenient to present this material under more modern garb,
since it will reappear in this form when we come to relate the work of Kermack and
McCrea to modern algebraic analysis.

3.3. Symplectic geometry. Although its roots can be found in the work of La-
grange, Poisson, Hamilton and Jacobi, symplectic geometry only took hold as the
proper geometrical framework for conservative dynamical systems in the 20th cen-
tury.

Let q1, . . . , qn, p1, . . . pn be coordinates in a real 2n-dimensional space R2n. The
standard symplectic structure of such a space is defined by the closed 2-form

Ω =

n∑
r=1

dqr ∧ dpr = d(

n∑
r=1

qr ∧ dpr),

where ∧ denotes the exterior product of differential forms. Let Q1, . . . , Qn and
P1, . . . , Pn be another set of coordinates of R2n and assume that T : R2n → R2n

is a map that transforms the P,Q coordinates into the p, q coordinates. In this
terminology, T is a contact transformation (or canonical) if

T ∗(

n∑
r=1

dqr ∧ dpr) =

n∑
r=1

dQr ∧ dPr. (3.5)

Nowadays these transformations are more often called symplectomorphisms. It
follows from (3.5) that

T ∗(

n∑
r=1

qr ∧ dpr)−
n∑

r=1

Qr ∧ dPr

is a closed 1-form, so it must be written as the differential of some function W , just
as in Whittaker’s definition. We can also easily define the Poisson bracket of two
functions f and g on R2n by the formula

{f, g} = Ω(df, dg).

4. Differential equations

We are lucky in having Sir William McCrea’s personal testimony on his work
with Kermack, which appeared at the end of [12].

4.1. The ‘research lectures’. As part of his effort to create a research school at
Edinburgh, Whittaker gave ‘research lectures’ on two afternoons a week on themes
that interested him at the moment. On his obituary of Whittaker [31, p. 239],
McCrea writes

The most famous of the department’s activities were his ‘research
lectures’ to staff, postgraduate students and visitors. He gave them
twice a week in the middle of the afternoon, throughout the aca-
demic year. Either he discussed his own current work or he gave his
own development of topics of current interest in mathematics. One
marvels at the mathematical power that enabled him always, year
after year, to have material for these lectures—he never repeated
the same ones–just as though he had nothing else to think about,
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when actually he was inundated with other duties. He had every-
thing fully written out in his notes, which he kept tidy by a method
of his own depending upon much use of scissors and paste. As he
delivered the lecture, he wrote the whole of it on the blackboard as
fast as he spoke. Apparently all his lectures to students were given
in this style.

In his obituary of Whittaker for the Edinburgh Mathematical Society [32], D. Mar-
tin adds a few more details to McCrea’s description

For instance, when Einstein first produced a unified field theory the
lectures dealt with that theory while a course on spinors followed
the publication by Cartan of his important book on the subject.
Whittaker’s ability to absorb and digest so much fresh mathemati-
cal work and to lecture on it term after term was truly remarkable.
For it must be emphasized that his lecture notes were not just ver-
batim copies of the essential parts of the published papers on the
subject, but contained what was almost a redevelopment of the
subject by himself.

And, after commenting, as does McCrea, on the fact that Whittaker wrote his
whole talk on the blackboard, Martin adds

At the end of a lecture he may have been physically tired but he was
certainly mentally exhilarated. The research room in the Mathe-
matical Institute is a small homely lecture room with a fire-place at
the back, and a few minutes before the end of Whittaker’s lecture
someone in the back row would put the kettle on the fire so that by
four o’clock tea would be ready. Whittaker would then relax in his
armchair by the fire, serenely happy with his colleagues and visitors
around him, while the animated discussion which arose would cover
anything from the lecture just given to academic affairs or religion.
In this atmosphere Whittaker was in a most exhilarating form and
the inspiration seemed to flow from him. Indeed, as far as research
work is concerned, it is rather for his power of inspiring others than
for his own work that he will long be remembered.

It was at one of these lectures that he introduced the generalisation of Laplace’s
transform that led Kermack and McCrea to their work on differential operators.

4.2. Edinburgh, autumn of 1930. We now turn to McCrea’s description of his
joint work with Kermack, which originated in one of Whittaker’s ‘research lectures’
at Edinburgh. According to him, Kermack often came to these lectures, even
though they were aimed mainly at mathematicians. Here is what he says at the
end of Kermack’s obituary [12, pp. 420-422]:

In one of these lectures in the autumn of 1930, Whittaker pro-
pounded a remarkable theorem on the solution of differential equa-
tions by definite integrals. Roughly stated, it dealt with the type
of relation

ψ(q) =

∫
χ(q,Q)φ(Q)dQ (4.1)
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where ψ and φ are solutions of linear differential equations related
through a contact transformation, χ is a solution of a pair of par-
tial differential equations derived from the same contact transfor-
mation, and the path of integration has to be suitably chosen. The
theorem may be regarded as a greatly generalised Laplace trans-
formation, and it covers all the well-known integral relations in the
theory of special functions. It was a brilliant conjecture of Whit-
taker’s, but for his part he contented himself with a number of
interesting illustrations. He did not attempt to formulate a general
statement nor to give a proof.

McCrea’s comments should be compared with Whittaker’s. In the paper [43] where
he announces this ‘brilliant conjecture’, Whittaker says:

My own original way of establishing the theorem was defective as a
proof, and has been superseded by a proof devised by Dr Kermack
and Dr M‘Crea [sic], which is given in the paper following this.

So it seems that Whittaker originally had a proof, which turned out to be wrong;
and that’s why the result he presented ended up as no more than a conjecture.

McCrea goes on to explain how the collaboration with Kermack came about:

Kermack saw immediately that Whittaker’s ideas required in the
first place an algebra of operators of a novel sort. Within a day or
two he sketched out his thoughts to me and we proceeded together
to develop them in four papers published soon afterwards.

The papers are [24], [25], [26] and [27], the first two of which we discuss in detail
in sections 6 and 7. Next, McCrea explains the contents of each one of the papers:

The first requirement of a theory was to show how to derive the
equations for the function χ in a manner that is unambiguous and
that makes them compatible. This was the main point of the first
paper. We proceeded to give definite rules for passing from the
differential equation for φ to that for ψ, and vice versa. We then
showed how to generalise the equations for χ. If (4.1) be regarded
as a transformation from φ to ψ, we also obtained some results on
successive transformations of this sort.

In our second paper we began by giving a number of theorems
in the algebra of a pair of operators p, q that commute according to
qp−pq = 1 and otherwise obey the usual laws of algebra. Probably
most of these are now familiar in the literature, but at the time they
were new and somewhat surprising. Kermack foresaw the forms of
some of the most complicated results, doing all the working in his
head; he had an altogether exceptional sense of algebraic form,
in addition to his penetrating sense of mathematical significance.
Functions ρ(q, p), σ(q, p) such that ρσ−σρ = 1 we called conjugate
and the transformation from q, p to ρ, σ we called canonical. We
were then able to reformulate the work on differential equations in
terms of these concepts.

It should perhaps be recalled that by this time Kermack had been blind for 5 years.
At the very beginning of his comments, McCrea says
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I understand that when [Kermack] was in hospital after the acci-
dent, as soon as he knew he would not see again, he got friends
and nurses to read fairly elementary mathematics to him, so that
he could train himself to take mathematics in this way and then to
think about it for himself. It was incredible to find how much he
could do without being able to put anything down on paper.

Kermack’s feats are indeed quite remarkable, as anyone who has had to compute
with noncommuting differential operators will surely appreciate. As to [26] and
[27], here is what McCrea had to say about them:

In the third paper we showed that in Whittaker’s original theorem
it is possible to replace the definite integral by a certain differential
operator. Perhaps, not unnaturally, this could be thought of as a
generalisation of Maclaurin’s theorem. We showed that it gave as
a particular case R. A. Fisher’s rule for the transformation of the
moment-generating function in probability theory.

The fourth paper is one with the most general mathematical
appeal. It is, of course, well known that the eigen-solutions of an
equation of hypergeometric type form a set of functions orthogonal
to the eigen-solutions of the adjoint differential equation. It is also
well known that such functions satisfy a difference equation in the
integral parameter of the set. We were able to show, at any rate
formally, that the differential equation and the difference equation
form a compatible or ‘conjugate’ pair in our sense, as do the adjoint
pair, and that the two sets of solutions form normalized orthogonal
sets. This seems to illustrate the unity and coherence that our work
was bringing to the theory of special functions. We had plenty
of ideas for further developments when circumstances brought our
mathematical collaboration to an end.

Actually, there is a fifth paper [30] on the subject, this time by McCrea alone.
It was published in the Mathematical Gazette and is of a more expository nature.
We will come back to it in §8.3.

5. On the solution of differential equations by definite integrals

In this section we begin to analyse the contents of the papers whose genesis has
been described in section 4, beginning with the one by Whittaker which gave rise
to the whole sequence. The purpose of Whittaker’s paper is clearly stated at its
introduction [43, p. 189]:

The object of the present paper is to communicate a general theo-
rem regarding the solution of both ordinary and partial differential
equations by means of families of definite integrals.

As he points out, the motivation is the fact that ‘in many cases the solutions
of a linear differential equation can be expressed as definite integrals’. Although
Whittaker gives his results for any number of variables, we will state them only for
two pairs of conjugate variables because this is the only case explicitly described
by Kermack and McCrea in their papers. However, as they put it in a footnote to
[24, p. 205]
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It is clear [...] that [the theory] may be generalised at once to
include any number of pairs.

Consider any contact transformation from a pair of conjugate variables (q, p) to
another pair (Q,P ), defined by a function W (q,Q). In other words,

P =
∂W

∂Q
and Q = −∂W

∂q
; (5.1)

see (3.4). Denoting by Q(q, p) and P (q, p) the variables when expressed in terms of
p and q, the differential equations

Q(q,
∂

∂q
)χ = tχ and P (q,

∂

∂q
)χ = −∂χ

∂t
, (5.2)

are compatible and possess a common solution χ(q, t). Note that the operators
that define the equations were obtained substituting p by ∂/∂q in the expressions
of Q(q, p) and P (q, p). Whittaker does not go into any details on how this is to be
done, and this is one of the weakest points in his approach. In the next article we
will see how Kermack and McCrea proposed to get around this problem using the
algebra of differential operators.

Whittaker’s General Theorem. Suppose that we wish to determine a function
ψ which satisfies a differential equation

F (q,
∂

∂q
)ψ = 0. (5.3)

Suppose that, on replacing q and p by their values in terms of P and Q in F (q, p)
we obtain G(q, p). Then,

ψ(q) =

∫
χ(q, t)φ(t)dt

where φ is the solution of

G(t,
∂

∂t
)φ = 0.

Immediately after stating the theorem, Whittaker proceeds to show that it is
an extension of the well-known Laplace transform. To see that, choose W = −qQ.
Then,

P =
∂W

∂Q
= −q and p = −∂W

∂q
= Q.

Replacing p by ∂/∂q in these equations, we find that the equations in (5.2) become,

∂χ

∂q
= −tχ and − qχ = −∂χ

∂t
.

The solution is readily seen to be χ = eqt where we are, as Whittaker adds in
brackets, ‘neglecting now, as always, an arbitrary multiplicative constant’. Before
we can state the conclusion of the General Theorem for this example, we must
compute the operator G. Luckily, in this case all we have to do is replace p by Q
and q by −P in F , which gives G(Q,P ) = F (−P,Q). Thus, it follows from the
General Theorem that if ψ is a solution of a differential equation (5.3), then

ψ(q) =

∫
eqtφ(t)dt
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where φ is the solution of

F (− ∂

∂t
, t)φ = 0;

which shows that Whittaker’s theorem is a generalisation of the Laplace Transform,
as claimed.

The remainder of the paper, comprising five more sections besides the first three
discussed here, contains a a number of more sophisticated examples related to the
hypergeometric function (§§4 to 7) and the Bessel function (§8).

6. On Professor Whittaker’s solution of differential equations by
definite integrals: Part I

As pointed out before, one of the problems with Whittaker’s method is, in the
words of Kermack and McCrea, how to pass

from a contact transformation in its algebraic form to these partial
differential equations, in a manner which is unambiguous and which
makes them compatible.

The emphasis is theirs. The introduction of such a method is, according to them-
selves, the ‘first object’ of their paper. From now on we refer to this paper as Part
I, while its sequel, discussed in the next section, will be called Part II.

6.1. The method. Following their approach, we begin with a contact transforma-
tion derived from a function W (q,Q). Thus, by §3.2, the transformation is given
by

P − ∂W

∂Q
= 0 (6.1)

p+
∂W

∂q
= 0 (6.2)

Next take p and P to be the operators ∂/∂Q and −∂/∂q, respectively. The simul-
taneous equations that define the function χ = χ(Q, q) will then be[

P − ∂W

∂Q

]
χ = 0 (6.3)[

p+
∂W

∂q

]
χ = 0; (6.4)

in other words,

∂χ

∂Q
− ∂W

∂Q
χ = 0 (6.5)

∂χ

∂q
− ∂W

∂q
χ = 0; (6.6)

which clearly have χ = eW for a solution. Then comes the clincher:

Now this χ will satisfy any equations derived from [(6.5), (6.6)] by
multiplying them by any functions of q or Q, or by differentiat-
ing them with respect to q or Q, or by any combination of such
processes.
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Thus, given operators R(q,−∂/∂q) and S(q,−∂/∂q), we have that any function
that satisfies (6.5), (6.6) also satisfies the two equations

R

(
q,− ∂

∂q

)[
∂

∂Q
− ∂W

∂Q

]
χ = 0

S

(
q,− ∂

∂q

)[
∂

∂q
− ∂W

∂q

]
χ = 0.

Actually, for the method to work we have to be more careful. We need to know
that χ satisfies equations of the form

Q

(
q,− ∂

∂q

)
χ−Qχ = 0 and (6.7)

P

(
q,− ∂

∂q

)
χ− ∂χ

∂Q
= 0, (6.8)

assuming that they have been determined by the procedure of multiplication by an
operator described above. Their next step is to simplify the above equations by
writing them in the form

[Q(q, p)−Q]χ = 0 (6.9)

[P (q, p)− P ]χ = 0, (6.10)

where we should not forget that P = ∂/∂Q and p = −∂/∂q. Then comes the
following rather cryptic comment:

It is clear that the passage from [(6.3), (6.4) to (6.9), (6.10)] by the
stated processes is exactly equivalent to the algebraic solution of
[(6.3), (6.4)] for Q, P in terms of q, p provided that the algebraic
operations employed are:

(i) Pre-multiplication by q,Q, p or P or any function of these.
(ii) Permutation of the variables according to the equations

qQ−Qq = 0, qP − Pq = 0, (6.11)

Qp− pQ = 0, pP − Pq = 0,

qp− pq = 1, QP − PQ = −1.

(iii) Equal quantities may be added or subtracted but not multi-
plied or divided.

These are to replace the ordinary rules of algebra for the present
set of variables.

Since q,Q commute it does not matter in what order the terms
in W (q,Q) and its derivatives are written.

In modern parlance these are the equations that define the second Weyl alge-
bra, which is the algebra of differential operators of the polynomial ring C[q,Q].

Denoting by f̂ the operator of C[q,Q] that corresponds to multiplication by the

polynomial f = f(q,Q), it is easy to show that this algebra is generated by q̂, Q̂
and the partial differential operators P = ∂/∂Q and p = −∂/∂q; see [10, p. 8-10]
for example. A straightforward computation shows that these operators satisfy the
rules reproduced above.
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6.2. An example. The paragraphs of Part I quoted above give a sketch of the
procedure that Kermack and McCrea proposed to use to compute the operators in
(6.9), (6.10). For the sake of clarity, we will perform the required computations
in a particular example, as we go through the various stages of the procedure
as described in [24, p. 207]. In the example, which is taken from [24, §3.12],
W = q2Q/4, so equations (6.1), (6.2) become

P − q2

4
= 0 (6.12)

p+
qQ

2
= 0 (6.13)

The description of the procedure begins as follows:

We can solve equation [(6.2)], which involves only p, q and Q, for
the variable Q according to the rules and obtain

Q(q, p)−Q = 0 (6.14)

giving equation [(6.9)] at once.

Applying this to the example, we have to solve (6.13) with respect to Q, which
gives

−2
p

q
−Q = 0; so that Q(q, p) = −2

p

q
.

Note that this is not quite as straightforward as it looks because the ‘fraction’ p/q
is not well-defined. Since p and q do not commute, pq−1 6= q−1p. Indeed, it follows
from (9) that

pq−1 − q−1p = q−2. (6.15)

However, taking into account the meaning of p and q as operators, the most natural
choice is Q(q, p) = −2q−1p, which is the operator chosen in [24, §3.12, equation
(19)]. Thus, in this example, equation (6.9) is given by

[−2q−1p−Q]χ = 0.

The description continues as follows:

From [(6.14)] we obtain, for example,

Q(q, p)2 −Q2 = 0, (6.16)

where we must obey the rules laid down in forming

Q(q, p)2 = Q(q, p)×Q(q, p)[.]

Proceeding in this way we may write in general, if F (Q) is any
function of Q,

F{Q(q, p)} − F (Q) = 0.

Let us compute Q(q, p)2 for Q(q, p) = −2q−1p. Using (6.15) we find that

(−q−1p)(−q−1p) = q−1(p(q−1)p = q−1(−q−1p+ q−2)p.

Hence,

Q(q, p)2 = −4q−2p2 − q−3p.
Of course any polynomial function of p and q can then be written in the desired
form. This is the method they apply to compute (6.10):
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Consequently, if we write [(6.1)] in such a way that in each term of
∂W (q,Q)/∂Q the part depending on Q comes last, we have merely
to substitute for Q its value already found in [(6.14)]. This gives
equation [(6.10)], and we have now derived [(6.9), (6.10)] in such
a manner that χ is still a solution.

Since, in our example,
∂W

∂Q
=
q2

4
,

which does not depend on Q, we obtain

P =
q2

4
without any need for further calculations. This example is so simple that it obscures
the many difficulties that one may have to overcome in order to apply the procedure.
However, Kermack and McCrea are quite clear about these difficulties:

The processes employed may be called pre-multiplication and post-
substitution. It is evident from the operational form of the equa-
tions that we may substitute only for a quantity which immediately
precedes the χ. In practical cases we may always check the algebra
by verifying that χ remains a solution of any equation obtained.
These rules never permit of any ambiguity of interpretation. The
only difficulty is that sometimes they do not yield a solution in
finite terms of [(6.2)] for Q. This is the case, for example, if one
requires the solution of a general quadratic equation. There seems
to be nothing corresponding to ‘completion of the square’ of ordi-
nary algebra, but we may assume there exists a formal solution in
series.

Indeed, as we will see later in §9.1 the fact that the authors assume that such
‘formal solutions’ always exist is one of the weakest points of the paper even when
judged by the standards of the 1930s.

6.3. Definite integrals. Immediately after the comment quoted above, Kermack
and McCrea turn to the analysis of Whittaker’s approach to the solution of definite
integrals. Let us assume that

ψ(q) =

∫
χ(q, t)φ(t)dt (6.17)

and that φ satisfies a given linear differential equation; say

G

(
t,
d

dt

)
φ(t) = 0; (6.18)

where G(Q,P ) can be written as a sum of monomials of the form PnQm. They
begin by studying the action of one of these monomials on ψ(q). Writing both P
and Q in terms of q and p = −∂/∂q, we have

PnQmψ =

∫
Pn

(
q,− ∂

∂q

)
Qm

(
q,− ∂

∂q

)
χ(q, t)φ(t)dt,

which equals∫
Pn

(
q,− ∂

∂q

)
tmχ(q, t)φ(t)dt =

∫
∂

∂t
Pn−1

(
q,− ∂

∂q

)
tmχ(q, t)φ(t)dt,
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by the two equations of (6.7). On integrating by parts once, we obtain

Pn−1χ · tmφ−
∫
Pn−1

(
q,− ∂

∂q

)
d

dt
(tmχ(q, t)φ(t)) dt;

and if we keep doing this we end up with an expression of the form[
Pn−1χ · tmφ− Pn−2χ

d

dt
(tmφ) + · · ·+ (−1)n−1χ

(
d

dt

)n−1

(tmφ)

]

+ (−1)n
∫
χ

(
d

dt

)n

(tmφ)dt. (6.19)

Since these calculations apply to each one of the monomials of G we get that∫
χ(q, t)G

(
t,
d

dt

)
φ(t)dt = I +G

(
Q

(
q,− ∂

∂q

)
,−P

(
q,− ∂

∂q

))
ψ(q),

where I is a sum of terms like the one that appears in square brackets in (6.19).
Choosing the path of integration C such that I vanishes on C and taking (6.18)
into account,

G

(
Q

(
q,− ∂

∂q

)
,−P

(
q,− ∂

∂q

))
ψ(q) = 0,

which is actually the converse of Whittaker’s original theorem. But, as the authors
point out in §3.2 of their paper, the original statement can be proved in essentially
the same way. The result is summarised on page 208 of Part 1 as follows:

If the function φ satisfies a given differential equation G(Q,P )φ =
0, then the definite integral [(6.17)], taken along a suitable path, will
satisfy the differential equation obtained by substituting for Q,P
in G(Q,P ) the values of Q(q, p) and −P (q, p) derived according to
the given rules. The order of the factors in terms like PnQm must
be preserved.

They give a nice application of this result to the integral

ψ(q) =

∫
C

exp

(
q2t

4

)
(1 + t)−

n
2−1(1− t) 1

2 (n−1)dt;

with C chosen as the ‘contour that encircles t = −1 and begins and ends at −∞’.
Taking χ = exp(q2t/4), it follows that W = q2t/4. Thus, in this case, (5.1) gives
P = q2/4 and p = −qQ/2; which when solved for Q,P , give Q = −2q−1p and

P = q2/4. Now, our choice of χ requires that φ(t) = (1 + t)−
n
2−1(1 − t) 1

2 (n−1),
which is easily shown to satisfy the differential equation

(t2 − 1)
dφ

dt
− (n+

1

2
− 3

2
t)φ = 0;

which corresponds to the differential operator

G(Q,P ) = (Q2 − 1)P − (n+
1

2
− 3

2
Q).

Substituting the expressions forQ,P in terms of q, p obtained above in this operator,
we find that ψ must be a zero of(

4q−1
d

dq
· q−1 d

dq
− 1

)
q2

4
− (n+

1

2
− 3q−1

d

dq
).
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Note that (q−1d/dq)(q−1d/dq) must be computed according to the rules of the
algebra established in §6.1. Performing this rather messy calculation, we may write
the equation for ψ in the form

d2φ

dt2
− (n+

1

2
− 1

4
q2)ψ = 0.

A look at some standard reference like Whittaker and Watson [42, §16.5, p. 347]
shows that this is the Weber equation, which received this name because it ap-
pears in a paper [40] of H. Weber on the solution of a partial differential equation
that arises when one studies certain physical problems (like heat propagation) on
cylindrical surfaces. In the language of Whittaker and Watson, the calculations we
performed above amount to proving that ψ is a constant multiple of the parabolic
cylinder function Dn. In other words, we have given an integral representation for
Dn. See also [42, Exercise 11, p. 353], where the constant of proportionality is
given explicitly.

6.4. Generalised equations. It turns out that to subsume all the examples in
Whittaker’s paper [43] under this scheme it is necessary to consider what Kermack
and McCrea call generalised equations for the function χ. Let

Pχ = h(p, q)χ (6.20)

Qχ = k(p, q)χ,

be a pair of compatible differential equations, and let ω̃ be a function of q and p.
Recall that we are assuming that P = ∂/∂Q and p = −∂/∂q. Note that, with this
interpretation, ω̃ is actually a differential operator on q, p. Multiplying both sides
of (6.20) by ω̃−1, we have

ω̃−1Pχ = ω̃−1h(p, q)χ

ω̃−1Qχ = ω̃−1k(p, q)χ.

Since, according to the relations satisfied by q, p,Q, P , the operator ω̃ commutes
with both Q and P , these last equations become

Pω̃−1χ = ω̃−1h(p, q)χ

Qω̃−1χ = ω̃−1k(p, q)χ.

Writing χ∗ = ω̃−1χ and taking into account that ω̃−1ω̃ = 1, we end up with a new
pair of compatible equation, namely

Pχ∗ = ω̃−1h(p, q)ω̃χ∗

Qχ∗ = ω̃−1k(p, q)ω̃χ∗.

More generally, Kermack and McCrea point out that if the relations

H(Q,P )χ = h(p, q)χ

K(Q,P )χ = k(p, q)χ,

yield a compatible pair of equations with the solution χ then, given a ‘function’ Π
of Q,P , the relations

Π−1H(Q,P )Πχ∗ = ω̃−1h(p, q)ω̃χ∗

Π−1K(Q,P )Πχ∗ = ω̃−1k(p, q)ω̃χ∗.
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yield a new compatible pair of compatible equations whose solution is given by
χ∗ = ω̃−1Π−1χ. For example, by taking Π = Q, we can transform the system

Pχ = qQ−1χ

pχ = − logQχ,

into

qχ∗ = PQχ∗ (6.21)

pχ∗ = − logQχ∗,

where χ∗ = Q−1χ. Moreover, since Qq is a solution of the original system, it follows
that χ∗ = Qq−1 satisfies (6.21).

In the remainder of their paper, Kermack and McCrea discuss the case whereby
the generating function of the contact transformation has P and p as its independent
variables (§5 ·1) and the composition of transformations, which they call successive
transformations (§6·1), giving several examples along the way. This last topic leads
to a method that can be used to evaluate definite integrals based on the elimination
of operators between two given equations (§§6 · 2 and 6 · 3).

7. On Professor Whittaker’s solution of differential equations by
definite integrals: Part II

Subtitled Applications of the methods of non-commutative algebra, Part II con-
tinues the search for solutions of ever more general differential equations that began
in Part I. Indeed, as the authors state at the very beginning of the paper:

It will be shown in the present communication that the necessary
and sufficient condition that [the system (6.7)] should be compatible
is that

Q(q, p)P (q, p)− P (q, p)Q(q, p) = 1, (7.1)

regarded as an equation in the non-commutative variables q, p which
themselves satisfy the condition

qp− pq = 1. (7.2)

We shall call functions satisfying this condition conjugate functions.
From this point of view the method employed by Professor Whit-
taker in his original paper, involving the use of a contact trans-
formation, was really a particular method of generating conjugate
functions. This powerful method may be supplemented and ex-
tended by the other methods developed in the following pages.

However, in order to do this they found it necessary to dig deeper into the underlying
non-commutative algebra

In working out this theory it has been found necessary to develop
somewhat the algebra of non-commutative variables obeying the
law [(7.2)].

The paper is divided into three parts, which we call II.A, II.B, and II.C, that we
discuss in some detail below. All the proofs in Part II are formal calculations
with expressions in q and p, taking into account only the commutation relation
qp− pq = 1.
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7.1. Non-commutative algebra. In Part II.A the authors investigate some prop-
erties of the algebra of non-commutative operators that are required for the appli-
cations in subsequent parts. They begin by formally defining the derivative of an
operator with respect to q and p, denoted by δ/δq and δ/δp respectively, and by
proving that the rules they introduce correspond to commuting with the conjugate
operator. Thus, if K(q, p) is an element in the non-commutative algebra generated
by q and p, then

δK(q, p)

δq
= K(q, p)p− pK(q, p);

as shown in §3, Theorem I. As Kermack and McCrea themselves point out, this
had already been observed by Dirac; see [13] and [14]. The uniqueness of this
derivative is proved in Theorem II. Defining integration as the ‘process inverse to
differentiation’, it is shown in Theorem III that every function has an integral with
respect to q and that this integral is unique up to a function of q. Of course, a
similar result holds for integrals relative to p.

Following present terminology we have chosen to refer to K(q, p) above as an
element of the non-commutative algebra generated by q and p, but Kermack and
McCrea call it a ‘function of q and p’. Indeed, although they call attention to some
of the problems encountered in calculating with these ‘functions’, like using the
correct relations when swapping sides, they are never clear about the hypotheses
these ‘functions’ have to satisfy for the theory to make sense mathematically. As
they put it:

All mixed derivatives are independent of the order of differentiation,
provided the necessary differentiability conditions are satisfied. It
would, however, be difficult to formulate conditions of convergence
or continuity or differentiability in the present variables. In this
paper, we leave aside such considerations and assume that the func-
tions with which we deal are such that we may legitimately perform
the required operations upon them; [25, p. 221].

This is essentially Dirac’s point of view in [14].
The fact is that it would have been easy to give a formal justification for these

results if one could restrict oneself to polynomial functions in q and p. This, how-
ever, is not enough for the intended applications. Indeed, most of Part II.A of the
paper is concerned with functions defined by series, specially the exponential func-
tion. In order to do this, it is necessary first to find a binomial formula for (p+ q)n.
As a preparation they prove in Theorem IV that if the derivatives of L(q, p) with
respect to q and p coincide, then L(q, p) is a function of q + p. Theorem V gives
the familiarly looking formula

δ(q + p)n

δq
=
δ(q + p)n

δp
= n(q + p)n−1.

An induction is then used in Theorem VI to show that

(p+ q)n

n!
=

∞∑
j=0

(
1

2

)j
1

j!

(p1 + q)n−2j

(n− 2j)!
; (7.3)

where

(p1 + q)n =

n∑
j=0

(
n

j

)
pn−jqj
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is the ‘usual’ binomial formula, written so that p always precedes q. Note that (7.3)
is a finite sum, since only finitely many of its terms are non-zero.

Turning now to §6, we find the definition and properties of the exponential
function in q and p. Take eq, for instance. Since this is a function of q only, it may
be defined with the help of the usual infinite series. The same, of course, holds for
ep. However, problems related to the non-commutativity of q and p take over when
we try to find what ep+q should be. The solution is given in Theorems VII and
VIII, where it is shown that

ep+q = epeqe1/2 = e−1/2eqep.

The remainder of Part II.A (§8) consists of a long and drawn out formal calculation
that leads to a formula for (q + φ(p))n in terms of the exponential function of a
series, where φ is ‘any function of p’.

7.2. The solution of differential equations. In Part II.B we come to the ap-
plications of non-commutative algebra to differential equations. The section begins
with two ‘preliminary results’, the first of which (Theorem X) states that every
element of the algebra in q, p is conjugate to q. In other words, given any ρ(q, p),
there exists ω̃(q, p) such that

ρ(q, p) = ω̃(q, p)qω̃(q, p)−1. (7.4)

Their ‘proof’ of this result is as follows. First, (7.4) is equivalent to

ρ(q, p)ω̃(q, p) = ω̃(q, p)q,

while,

ω̃(q, p)q = qω̃(q, p)− δω̃(q, p)

δp
;

so that
δω̃(q, p)

δp
− (q − ρ)ω̃(q, p) = 0,

which they consider as a differential equation to be solved by the method of un-
determined coefficients. In order to do this both ω̃(q, p) and q − ρ are written as
power series on p whose coefficients are functions on q. This leads to a recursive
system that the authors claim can be formally solved.

Now let ρ(q, p) be any element of the algebra in q, p, and let ω̃(q, p) be chosen
so that (7.4) is satisfied. Then, if

σ(q, p) = ω̃(q, p)pω̃(q, p)−1

it follows that ρσ−σρ = 1; and ρ and σ are said to be conjugate functions. This is
Theorem XI, which states that for every ‘function’ ρ(q, p) there is a ‘function’ σ(q, p)
such that ρ and σ are conjugate. The converse of this result is given in Theorem
XII, where it is shown that every pair of conjugate functions can be obtained by
conjugating q and p with an appropriate ‘function’ ω̃(q, p). Their proof of this result
makes use of the exponential defined in the Part II.A.

It is only with Theorem XIII (§10) that we properly turn to the applications of
these results to differential equations. More precisely, the authors prove that a pair
of equations of the form

Q(q, p)χ = Qχ (7.5)

P (q, p)χ = Pχ
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is compatible if and only if Q(q, p) and P (q, p) are conjugate as functions of the
operators q and p = −∂/∂q. Writing the commutator Q(q, p)P (q, p)−P (q, p)Q(q, p)
as [Q(q, p), P (q, p)], we have from (7.5) that

[P (q, p), Q(q, p)]χ = [Q,P ]χ = χ;

where the last equality follows by taking P = ∂/∂Q as in Part I. Next, the authors
claim that if [P (q, p), Q(q, p)] 6= 1 then the previous equation implies that χ(q,Q)
may be written as a product,

χ(q,Q) = λ(q)µ(Q),

where ([Q(q, p), P (q, p)] − 1)λ = 0. This, however, is not compatible with the
original system, thus proving that [P (q, p), Q(q, p)] = 1. Conversely, if P (q, p) and
Q(q, p) are conjugate, then there exists a function ω̃ such that

Q = ω̃(q, p)qω̃(q, p)−1 and P = ω̃−1(q, p)pω̃(q, p). (7.6)

In this case, (7.5) has a solution given by ω̃(q, p)e−qQ; so the equations are indeed
compatible.

Theorem XIII is used to give a unified approach to the two methods of con-
structing contact transformations used in Part I. Recall that, in the first method,
the contact transformation was constructed from a generating function W (q,Q);
while, in the second, P (q, p) and Q(q, p) were given as in (7.6). In terms of the in-
tegral (6.17), the kernel χ (which they call a nucleus) equals eW in the first method
and ω̃e−qQ in the second. The equivalence of these two methods is made explicit
in the following theorem.

Theorem XIV. To any given ω̃-function there corresponds a χ-function given by
χ(q,Q) = ω̃(q, p)e−qQ = e−qQω̃(q,Q), and to any χ-function there corresponds a
ω̃-function given by ω̃(q,Q) = eqQχ(q,Q).

The next result (Theorem XV) proposes a method for constructing a family of
contact transformations. It is followed by two theorems of a very general nature.
Consider a differential equation

g(q, p)ψ = 0, where p = −∂/∂q.
Theorem XVI: the solution of this equation is given by

ψ(q) =

∫
ω̃(q, p)e−qtdt (7.7)

where ω̃ is defined by g(q, p) = −ω̃qω̃−1;
Theorem XVII: if G(Q,P )φ = 0 is any other linear differential equation,

then there exists a function χ such that

ψ(q) =

∫
χ(q, p)φ(Q)dQ, (7.8)

for a suitable path of integration.

Thus, while Theorem XVI gives a general formula for the solution of any linear
differential equation, Theorem XVII shows that the solutions of any two such equa-
tions are connected by an integral formula.

The proofs of both theorems follow by combining previous results from Parts I
and II. Thus, by Theorem X, there exists ω̃ such that g(q, p) = −ω̃qω̃−1, and by
Theorem XIV we have an explicit formula for the corresponding χ-function. Let
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φ = φ(t) be a function that satisfies dφ/dt = 0. Hence, Pφ(q) = 0 and by Part I,
the function ψ defined in (7.7) is a solution of g(q, p)ψ = 0; which proves Theorem
XVI.

In order to prove Theorem XVII we must first introduce the adjoint G̃ of G as
the operator obtained by ‘reversing the order of each term and changing the sign
of P ’, [25, p. 234]. Next, we determine (Theorem X) ω̃(q, p) and Π(q, p) such that

g(q, p) = −ω̃qω̃−1 and G̃(q, p) = −ΠqΠ−1.

Thus, χ = ω̃Πe−qQ is a solution of the system

−ω̃qω̃−1χ = ΠPΠ−1χ (7.9)

ω̃pω̃−1χ = ΠQΠ−1χ (7.10)

which, being compatible, define a contact transformation from q, p to Q,P . Thus,

by (7.9), g(q, p) = G̃(Q,P ). But this is exactly the condition required to apply
the results of Part I in order to conclude that if φ satisfies G(Q,P )φ = 0 then the
function ψ defined by (7.8) satisfies g(q, p)ψ = 0.

Part II.B ends with an integral formula for the function ω̃ that satisfies Q(q, p) =
ω̃pω̃−1. Suppose that the function χ corresponding to the given contact transfor-
mation is known, and let θ(Q, t) be the function defined by

e−qQ =

∫
θ(Q, t)χ(q, t)dt.

Since χ = ω̃e−qt, then

ω̃−1e−qQ =

∫
θ(Q, t)e−qtdt,

is the desired formula.

7.3. The identical transformation and infinitesimal transformations. This
short part collects a miscellany of results. Of course the identical transformation
of the title is the one given by Q = q and P = p. Applying Whittaker’s Theorem
to this transformation it is possible to prove the well-known property of Dirac’s
δ-function; namely,

ψ(q) =

∫
ψ(t)δ(t− q)dt.

An infinitesimal transformation is a deformation of the identical transformation by
a function depending on a parameter ε whose square vanishes. The authors prove
that, for any θ(q, p) the formulae

Q = q − εδθ/δp and P = p+ εδθ/δp

define a contact transformation. Articles 15 to 17 discuss some identities, including
a generalisation of Taylor’s Theorem to non-commutative variables. Finally, in §18
the authors state that every algebra whose generators q, r satisfy qr− rq = F (r, q)
‘can be reduced to the algebra for which’ qp − pq = 1. This has to be interpreted
with great care because it is not true that every algebra with a relation of this sort
is isomorphic to the Weyl algebra; indeed, we need only take qr − rq = 0 to see
that. The argument given in the paper depends on infinite series in q, p which, as
we shall see, can cause all sorts of problems; see §9.1 for more details.
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8. Three more papers

In this section we discuss two shorter papers of Kermack and McCrea that explore
and extend some of the themes discussed in Parts I and II, and a more elementary
exposition of these methods written by McCrea for the Mathematical Gazette. The
notation we have been using will remain in force throughout this section.

8.1. An operational method. The main result of this paper is a formula for
ψ in terms φ that, unlike (7.7), does not involve integration. In keeping with the
policy of Parts I and II we consider only the 2-dimensional case of the result. This is
essentially what the authors do for, although the statement is given in full generality
in [26, p. 177], they prove it only in dimension two.

Theorem 8.1. Consider a contact transformation from the variables q, p to the
variables Q,P derived from the function W (q, P ), so that

Q =
∂W

∂P
and p =

∂W

∂q

and suppose that the variables Q,P when expressed in terms of q, p are denoted by
Q(q, p),P(q, p). Suppose that φ(Q) satisfies the differential equation G(Q,P )φ = 0,
where P = ∂/∂Q. Let F (q, p)ψ = 0 be the equation obtained by substituting Q(q, p)
for Q and −P(q, p) for P , where p = −∂/∂q. Then

ψ(q) = eW (q,−∂/∂Q)φ(Q).

Kermack and McCrea give two proofs of this result, both of which take as their
starting point the integral expression for ψ in terms of φ given in (6.17) and formally
deduce from it the required differential expression; see [26, p. 177]. Neither of these
proofs is complete, a fact that the authors themselves point out; adding that:

There is much more that requires investigation about the nature of
the functions for which the result holds and the paths of integration
used to obtain it, and about the degree of generality when obtained.
We do not attempt this investigation, but pass on to applications
of the general theorem.

See [26, p. 176]. After a brief discussion of how Theorem 8.1 can be generalised
in the spirit of Part II, the authors turn to what they call special cases. By taking
W = qP , they argue in §6 that the theorem can be seen as a generalisation of
Taylor’s Theorem, which they write in the form

ψ(x+ h) = ehd/dxψ(x).

In §7 they use their method to give a new proof of a result by R. A. Fisher [16,
§10, p. 226ff] on the moment generating function; while §8 is concerned with
obtaining a differential equation satisfied by a function series. This in turn leads to
a method that allows them ‘formally to reduce the solution of any [linear] differential
equation [...] to a simple quadrature, together with the solution of a problem in
non-commutative algebra’; see [26, §9, p. 184]. The ‘problem in non-commutative
algebra’ is that of finding the ‘roots’ p of the equation P = F (q, p)−1, where F is a
polynomial expression in q, p = −∂/∂q. Generating functions are the theme of §10,
where it is shown that their method can be used to derive differential and difference
equations for the functions of q that constitute the coefficients of the power series
in t of a generating function eU(q,t).
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From §12 (infinitesimal transformations) and throughout the whole of the final
section (called ‘examples and applications’) Kermack and McCrea apply these re-
sults to various choices of W , deriving from some of them new proofs of well-known
results about special functions such as Bessel’s function (§14), Hermite polynomials
(§15) and Laguerre polynomials (§16).

8.2. On compatible differential equations. The authors explain the aim of this
paper as follows:

In some previous work [i.e. the three papers we have already dis-
cussed] we have defined conjugate partial differential equations for
a function of two variables. In the present paper we begin by ex-
amining more fully the condition for their compatibility and that of
their adjoint equations. We then extend the work to the case where,
instead of partial derivatives with respect to one of the variables,
we have differences with respect to that variable. This is the case
applicable to discrete eigenvalues. It is well known that the eigen-
solutions of a linear differential equation involving a parameter are
orthogonal to those of its adjoint equation. This parameter can be
treated as the second variable in the present work, and a difference
equation with respect to its eigenvalues can be written down for
the eigenfunctions. What we now show is that the eigensolutions
of this differential and difference equation, and those of the adjoint
pair of equations, form normalized orthogonal sets.

See [27, p. 81]. This is followed by the usual disclaimer:

We do not examine fully the general conditions under which the
latter theorem is true. Our purpose is rather to show how it can be
used to predict the existence and form of orthogonality relations,
the strict validity of which may require independent investigation.

As the statement above indicates, §2 begins with a study of the system

(Q(q, p)−Q)χ = 0 (8.1)

(P (q, p)− P )χ = 0 (8.2)

which, by Theorem XIII of Part II (see §7), is compatible if and only if

Q(q, p)P (q, p)− P (q, p)Q(q, p) = 1. (8.3)

This is followed by one of the main results of the paper.

Theorem II. If the condition [8.3] is satisfied, and if Q(q, p) is an integral function
of p of degree n, then there are in general n, and only n, common solutions χ(q,Q)
of [8.2], linearly independent in both q and Q.

The proof they proposed is rather clever and deserves to be reproduced here.
Following the authors, we give it only for n = 3. Since Q(q, p) has degree n = 3 in
p = −∂/∂q, it follows that equation (8.2) is a linear differential equation of the third
order. As such, it has a basis of three elements, which we denote by χ1, χ2 and χ3.
These are functions of q and Q, and every other solution of (8.1) can be written
as a linear combination of χ1, χ2 and χ3 with coefficients that are functions of Q.
All the computations that follow take place in the algebra generated by q, p,Q, P ,
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subject to the rules stated in §6.1. Multiplying (Q(q, p)−Q)χj = 0 respectively by
P (q, p) and P , and using the commutation relations, we get the two equations

(Q(q, p)P (q, p)−QP (q, p)− 1)χj = 0

(Q(q, p)P −QP − 1)χj = 0;

which, when added up and factored, give rise to

(Q(q, p)−Q)(P (q, p)− P )χj = 0.

Thus (P (q, p)−P )χj is a solution of (8.1) and, as such, may be written in the form

(P (q, p)− P )χj = aj1χ1 + aj2χ2 + aj3χ3.

Thus, if χ = b1χ1 + b2χ2 + b3χ3, we obtain from the previous equations that

(P (q, p)− P )χ =

3∑
j=1

(a1jb1 + a2jb2 + a3jb3 − b′j)χj , (8.4)

where b′j = dbj/dQ. Thus χ is also a solution of (8.2) if and only if the bs satisfy
the system of differential equations given by the vanishing of the coefficients of χ1,
χ2 and χ3 in (8.4). By eliminating two of the bs, say b1 and b2, we can produce
a linear differential equation of the third order in the remaining b3. This equation
is then solved, and each one of its three solutions will give rise to a triple b1, b2, b3
that is a solution of the required system, thus completing the proof of the theorem.

Adjoint equations (already defined in §7.2 above) are introduced in section 2,
where it is also proved that if a pair of equations is compatible then so are their
adjoints. Difference equations appear for the first time in section 3 as an equality
of the form (S(q, p)− eP )χ = 0, where eP is the operator formally defined defined
by eP f(Q) = f(Q + 1). Two theorems are then stated. According to the first
(Theorem IV) the system

(Q(q, p)−Q)χ = 0 (8.5)

(S(q, p)− eP )χ = 0, (8.6)

is compatible if and only if

Q(q, p)S(q, p)− S(q, p)Q(q, p) = S(q, p),

when qp − pq = 1; whilst the second (Theorem V) is the analogue of Theorem II
above for this system of equations. Finally, it is pointed out that the adjoint of the
operator eP is e−P ; so the adjoints of equations (8.5) are

(Q∗(q, p)−Q∗)χ∗ = 0 (8.7)

(S∗(q, p)− e−P )χ∗ = 0, (8.8)

The orthogonality of χ and χ∗, mentioned in the introduction to the paper (see
quotation above), can be formally stated as∫ b

a

χ(q,Q)χ∗(q,Q′)dq = kδQQ′ ,

where δQQ′ is Kronecker’s delta symbol. These orthogonality relations are proved
in Theorem VII of section 5 by an integration by parts argument. A comment is
required concerning the limits of integration a and b. It is assumed that
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the pair of solutions χ and χ∗ can be made to satisfy ‘suitable
boundary conditions at end-points q = a, q = b (say), by restricting
Q to assume integral eigenvalues.

See [27, p. 87]. What these ‘suitable boundary conditions’ are, depends on the
equations, some of which are discussed in sections 9 to 12. These include Legendre
polynomials (section 10), parabolic cylinder functions (section 11) and Bessel func-
tions (section 12). This leaves out sections 6 to 8, which treat of some possible
generalisations of the previously discussed methods. Article 8, on continuous eigen-
values, deserves to be quoted in full:

A similar theory can be written down formally for the case of
continuous eigenvalues, with Dirac’s δ-function replacing the Kro-
necker δ-symbol. But the satisfaction of the boundary conditions
appears to be more difficult, and we have not succeeded in con-
structing examples for which it holds.

See [27, p. 89].

8.3. Operational proofs of some identities. This is the shortest of the four
papers. It contains a brief explanation, by McCrea alone, of the method developed
in the previous papers with some applications to special functions (Bessel and
Legendre). We quote the first paragraph in full for the opinion it contains on the
merits of the method and the status of the theory of special functions in the 1930s:

The interest of pure mathematicians is nowadays shifting from the
study of special functions to general function theory. In fact the
study of special functions might ultimately be forsaken, as for ex-
ample in geometry the study of the triangle is now virtually a closed
chapter, were it not for one important consideration. That is, that
these functions must always be in constant use in mathematical
physics. Hence their properties tend to become questions of prac-
tical application rather than of theoretical interest. It follows that
there is a demand for some method, if only a formal one, which will
derive the required properties in an expeditious manner, without
always calling for the services of the professional pure mathemati-
cian. The purpose of this note is to show how a beginning might
be made by using a calculus of operators. We illustrate the method
by obtaining some identities for functions of hypergeometric type.

See [30, p. 43]. This point of view is reinforced at the conclusion, where it is said
that

The point illustrated, however, is that [the identities] can all be
discovered by the single method of transforming operators.

See [30, p. 45].

9. Discussion

As far as I can determine these papers had essentially no impact on the mathe-
matics of the 20th century. In this section we seek to answer two questions. The
first is why this might be so; the second is whether this constitutes a case of a
missed opportunity, as defined by Freeman Dyson in [15].
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9.1. On rigour, and its absence. As the quotations given in §§7.1, 8.1 and 8.2
indicate, Kermack and McCrea knew very well that theirs was a formal method,
that would require a lot of work to become acceptable by the standards of rigour
of the 1930s. We begin with a problem that had already been explicitly discussed
in a paper published at about the same time, the convergence of a series in q and
p = −∂/∂q.

Recall that such series are necessary as long as we consider generalised equations
of the type introduced in §6.4, which are defined by conjugating with an operator
ω̃(q, p). Since all elements in the algebra generated by q, p are implicitly taken to
be sums of monomials in q and p, we can only apply the results of Part I if ω̃(q, p)−1

can be so written. However, such a sum would very often be infinite; a series, in
other words.

The convergence of series in the algebra generated by q, p subject to pq− qp = 1
was discussed by D. E. Littlewood in [29, pp. 217–219]. As Littlewood points out,
there is no difficulty in defining what it should mean to say that a sum of monomials
in q, p is convergent. However, as he puts it:

If two such series were multiplied, a question of convergence would
arise, as indeed it would in the multiplication of two infinite matri-
ces.

See [29, p. 217]. Indeed, it follows from pq − qp = 1 that

pnqn = pq(pq + 1) · · · (pq + n− 1).

Thus, for example, if we try to write the product (
∑

i≥0 aip
i)(
∑

j≥0 biq
i) as a series

in the monomials qkp`, we must deal with the sum∑
i≥0

aibi

which need not be finite even when
∑

i≥0 aip
i and

∑
j≥0 biq

i are convergent. Lit-
tlewood, however, adds that

Without making any attempt to obtain best possible conditions, we
give a sufficient condition that multiplication should be possible ac-
cording to the usual rules. If, in the series of the form

∑
am,np

mxn

for existent terms, m − n is bounded above (alternatively below)
products are always convergent, and in the product m − n is still
bounded above (below).

Of course x denotes what we have been calling q, and an ‘existent term’ is one
whose coefficient is nonzero.

Actually, as Littlewood also points out, although it is always possible to rewrite
a convergent series

∑
am,np

nqm into the form
∑
bm,nq

mpn, the latter need not be
convergent, so that ‘it would appear to be necessary to restrict our infinite series to
some specific form’; [29, p. 217]. The way out he proposes is to allow only infinite
series of the form

∑
bm,nq

mpn. Unfortunately, by doing that we introduce zero
divisors; for example, (

1− qp+
q2p2

2!
− q3p3

3!
+ · · ·

)
q = 0,

as one readily checks; [29, p. 218]. Hence:
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Instead of extending our original algebra thus by means of infinite
series, we can extend it by defining new quantities which are both
right-hand and left-hand inverses of polynomial expressions in x [q
in our notation] and p.

See [29, p. 219]. This approach is satisfactory from Littlewood’s point of view
because his aim is to construct a division ring that contains the ring generated by
q, p subject to pq− qp = 1. We, however, require more, because our elements must
act on functions in some way, and it is not clear what the action of such an inverse
should be. For more details on Littlewood’s paper, see [11]. In §9.3 we will see how
these problems were dealt with in the context of modern algebraic analysis.

Reading these papers in chronological order, one gets the impression that the
authors became so deeply aware of the obstacles to formalizing their results that
they began to suspect that such a formalization might not be possible. Thus, in
Part I they seem rather optimistic, writing that:

The only difficulty is that sometimes they do not yield a solution
in finite terms of [(6.2)] for Q. [...] but we may assume there exists
a formal solution in series.

By the time they wrote Part II, the difficulties are spelt out more clearly:

It would, however, be difficult to formulate conditions of conver-
gence or continuity or differentiability in the present variables.

But are immediately swept under the carpet:

we leave aside such considerations [of convergence] and assume that
the functions with which we deal are such that we may legitimately
perform the required operations upon them.

In [26] this has become the less optimistic:

There is much more that requires investigation about the nature of
the functions for which the result holds and the paths of integration
used to obtain it, and about the degree of generality when obtained.

And, once again, they make clear that such investigation will not be carried out.
A similar observation is made in [27]. By the time McCrea wrote [30] one almost
senses a feeling of despondency. To begin with, even the study of special functions
seems to be at a low ebb, for

[t]he interest of pure mathematicians is nowadays shifting from the
study of special functions to general function theory.

However, since such functions are still important in physics,

[i]t follows that there is a demand for some method, if only a formal
one, which will derive the required properties in an expeditious
manner[...].

Thus,

[t]he purpose of this note is to show how a beginning [my emphasis]
might be made by using a calculus of operators.

As the conclusion quoted above makes clear, what is proposed is no more than a
method for the discovery of these identities, that can then be proved rigorously by
pure mathematicians.

One final point concerns the local character of the results. Modern algebraic
analysis makes use of sheaf theory to prove results over general manifolds, but
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Kermack and McCrea do not even say whether they mean their results to be taken
locally or globally. This, however, is not a true fault of theirs, for such considerations
would have to wait for the second half of the 20th century. At that time, results
were implicitly taken to hold only in the neighbourhood of a point, whenever that
may be necessary. Of course there were conflicts. After all, some of the definite
integrals are computed along paths that go to infinity; as we saw in §6.3. However,
these problems were dealt with case by case.

9.2. Algebraic analysis. Although the papers of Kermack and McCrea do not
seem to have had any influence on the mathematics of the 20th century (see §9.1),
many of their results entered mainstream mathematics as part of what became
known as algebraic analysis. This is an umbrella term for the study of (holomor-
phic) linear differential equations by algebro-geometric methods: rings, modules,
sheaves and cohomology; see [19] and [20]. More concretely, one can think of alge-
braic analysis as the study of modules over rings of differential operators. Such a
module can be associated to both, a system of linear differential equations and the
space in which we seek its solutions. In this language the solutions of a given differ-
ential equation are homomorphisms from the module that represents the differential
equation to the one where the solutions are sought; see [10] or [7].

Algebraic analysis is a rather young subject, whose history is yet to be written.
Luckily, we need little more than a time line of its main achievements up to the
early 1990s, for our aim is merely to show in what way the work of Kermack and
McCrea can be formalized within this theory.

Algebraic geometrical methods entered the theory of linear differential equations
in the late 1950s and early 1960s. In the case of constant coefficients, a differential
operator can be considered as a polynomial in the ∂/∂xs. Thus a system of linear
differential equations with constant coefficients gives rise to an algebraic variety,
that can be used to tease out the properties of the differential system. This is done,
for example, in [18, §3.1, p. 211] and [33, §4, p. 96]. At about the same time M.
Sato, then a postgraduate student and high school teacher in Japan, was developing
the theory of hyperfunctions:

during the summer of 1957 I tried to prepare something that I
could show him [his advisor, Shōkichi Iyanaga], and that was hy-
perfunctions. I worked out hyperfunction series and outlined the
theory for several variables—though the complete theory was fin-
ished later, since it required a generalisation of cohomology theory.
In December of that year, I went to see Professor Iyanaga, after an
interruption of some years, and told him about it.

See [1, p. 211]. Sato’s algebro-geometric approach to the theory of linear differ-
ential equations was first systematized in the 1970 Master thesis of his student M.
Kashiwara. This often quoted work, whose original was handwritten in pencil, was
only published in 1995; see [21]. Kashiwara and T. Kawai, also a student of Sato,
helped him to develop and write his ideas on microdifferential analysis, which can
be roughly described as analysis done in the cotangent bundle. This is the origin
of Microfunctions and pseudo-differential equations [34] published in 1973. It is in
this context that the work of Kermack and McCrea can be formalized as we ex-
plain in §9.3. For more details on the work of Sato and Kashiwara see [1], [35], [36]
and [37]. In a parallel development, rings of differential operators with polynomial
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(rather than holomorphic) coefficients were also being studied by I. N. Bernstein in
the USSR; see [5] and [6].

Although originally developed in the cradle of partial differential equations, the
scope of algebraic analysis widened to include representation theory. Indeed, in
the 1980s it provided one of the key ingredients in the solution of the the Kazhdan-
Lusztig conjecture in the representation theory of Lie algebras; see [4] and [9]. In this
context one of the key results of the theory is the Riemann-Hilbert correspondence,
which is one of the latest developments in a subject that goes back to the work
of Gauss and Riemann on the hypergeometric function and includes such classics
as Fuch’s work on equations with regular singularities and Hilbert’s twenty first
problem; see [17, chapters I and II] and [8].

9.3. Kermack-McCrea and algebraic analysis. In this article we give a rough
sketch of the local theory of microdifferential operators and explain how the results
in the papers of Kermack and McCrea can be formalized in the context of this
theory. As usual, we consider only the one dimensional case. In this section we will
follow the modern convention of setting p = ∂/∂q, rather than −∂/∂q as Kermack
and McCrea do.

Let q, p be coordinates in the cotangent bundle T ∗C ∼= C× C, and consider the
open set of those points T ∗C for which p 6= 0. We will work at the neighbourhood
of a point in this open set which, without loss of generality, we can assume to
be z = (0, 1). A function f = f(q, p), holomorphic in a neighbourhood of z,
is p-homogeneous of order s if f(q, p) = g(q)ps, where g(q) is holomorphic in a
neighbourhood of z. An infinite sum F =

∑
s fs(q, p) of p-homogeneous functions

is a microdifferential operator in a neighbourhood of z if

(1) there exists a neighbourhood U of z such that fs(q, p) is holomorphic and
p-homogeneous of order s in U ;

(2) there exists an integer t such that fs = 0 for all s > t;
(3) there exist constants A and K such that

|fs|U = sup{|fs(q, p)| | (q, p) ∈ U} ≤ A(|s|!)K |s|, for all s.

The set E of all these operators can be made into a ring. The addition is defined
as usual, while the multiplication of F =

∑
s fs and G =

∑
s gs is given by

F ◦G =
∑
k,s,t

1

k!

∂kfs
∂pk

∂kgt
∂qk

.

A generalisation of these definitions to several variables and a proof that if F and
G belong to E, then so does F ◦G can be found in [7, p. 136].

For this ring to play its intended rôle, the commutation relations of §6.1 must
hold among its generators. However, by definition,

p ◦ f(q, p) = f(q, p)p+
∂f

∂q
while f(q, p) ◦ p = f(q, p)p

from which the relation p ◦ q − q ◦ p = 1 immediately follows. Since, under this
definition, p plays the part of the operator ∂/∂q, from now on we use ζ to denote
the coordinate of T ∗C conjugate to q.

Given an element F =
∑

s fs ∈ E, it follows from (2) that there exists a largest
integer m such that fm 6= 0 but fs = 0 for all s > m. This integer is called the order
of F , and we write σ(F ) = fm(q, ζ), a polynomial in the commutative variables q
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and ζ. Using the order we can define a filtration in the ring E. It can now be proved
that if σ(F )(0, 1) 6= 0 then F is invertible in E. Recall that inverses were required
in Part II to prove that every ‘function’ of q, p was conjugated to q; see (7.4). A
similar result holds in E:

if σ(F ) = q, there exists an invertible element A ∈ E such that
A ◦ F ◦A−1 = q.

Let us now turn to contact transformations. First of all, if F =
∑

s fs and
G =

∑
s gs have orders, respectively, m and n, then the highest order term in

F ◦G−G ◦ F is
∂fm
∂p

∂gn
∂q
− ∂gn

∂p

∂fm
∂q

,

which is equal to the Poisson bracket {fm, gn} = {σ(F ), σ(G)}. Suppose now that
Φ is an isomorphism of E that preserves operator order ; in other words, if F ∈ E

has order m, than Φ(F ) has order at most m. If Φ(q) = Q(q, p) and Φ(p) = P (q, p),
then

1 = Φ(p ◦ q − q ◦ p) = Φ(p) ◦ Φ(q)− Φ(q) ◦ Φ(p) = P ◦Q−Q ◦ P.
Hence,

1 = σ(P ◦Q−Q ◦ P ) = {σ(P ), σ(Q)}.
This implies that the map of C2 defined by φ(q) = σ(Q) and φ(p) = σ(Q) is a
contact transformation, as explained in §3.2. The converse also holds.

Theorem 9.1. Let f and g be holomorphic functions in q, ζ which are homogeneous
in ζ and satisfy {f, g} = 1. There exists an order preserving isomorphism Φ of E

such that

σ(Φ(q)) = g and σ(Φ(p)) = f.

Suppose now that Φ is an order preserving isomorphism of E defined by

Φ(F ) = A ◦ F ◦A−1,
for some invertible A ∈ E. Then, using the multiplicativity of σ,

σ(Φ(F )) = σ(A ◦ F ◦A−1) = σ(A)σ(F )σ(A−1) = σ(F ),

since the symbols are commutative polynomials; see [7, p. 138]. In other words,

if an order preserving isomorphism Φ is defined by conjugation with
an invertible element of E then σ(Φ(F )) = σ(F ).

Remarkably, the converse of this result is also true.

Theorem 9.2. If Φ is an order preserving isomorphism of E for which

σ(Φ(q)) = σ(q) = q

then there exists an invertible element A ∈ E such that Φ(F ) = A ◦ F ◦A−1.

Finally, let us turn to Whittaker’s theorem on integrals. In order even to state
the theorem we ought first to explain how a microdifferential operator acts on a
holomorphic function. That, however, is neither very natural, nor very useful for
our purposes. Indeed, instead of taking a holomorphic function for the kernel of
the integral, the modern version of the theorem takes a microfunction defined in
terms of Dirac’s δ. For an elementary definition of microfunctions see [10, p. 48ff].
Since p = −∂/∂q is surjective as an operator on the space of microfunctions, the
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integration operator can be defined as its inverse. The result we require is the
following:

Let W = W (q, p) be a function and let P = P (q, p) be a microdif-
ferential operator. Under certain technical hypothesis on W there
exists a microdifferential operator Q(q, p) such that∫

P (q, p)δ(W (q, t))u(t)dt =

∫
δ(W (q, t))Q(q, p)u(t)dt.

Conversely, if P is given, a Q can be constructed so that the same
equation holds. Furthermore, P and Q are operators of the same
order.

For a detailed statement and proof of this result see [22, p. 221]. Thus, if we assume
that u(t) satisfies Q(q, p)u(t) = 0, then

0 =

∫
P (q, p)δ(W (q, t))u(t)dt = P (q, p)

(∫
δ(W (q, t))u(t)dt

)
which is a modern analogue of Whittaker’s General Theorem; see §4.2.

9.4. A case of missed opportunity? In his well-known paper [15], Freeman
Dyson introduced the idea of missed opportunity, which he defines as

occasions on which mathematicians and physicists lost chances of
making discoveries by neglecting to talk to each other.

A quick glance might suggest that the work of Kermack and McCrea fits this
definition fairly well, if by mathematician we understand ‘pure mathematician’;
but, is this really so? More precisely, had a pure mathematician of the 1930s looked
carefully into these papers of Kermack and McCrea, could he or she have developed
the necessary machinery and thus discovered the foundations of algebraic analysis
thirty years before anyone began to apply modern algebra to linear differential
equations? It seems to me that so far as this question has an answer, it must be
no. Indeed, it is difficult to imagine algebraic analysis being developed without the
aid of cohomology and sheaves, a technology that had not been developed at that
time; see [19] and [20].

On the other hand, consider the history of the δ-function. It had been used by
Heaviside, and was independently introduced by Dirac in 1927, but had to wait for
L. Schwartz’s work on distributions in the 1940s before it was accepted as a bona
fide mathematical concept. That, however, did not stop physicists from using it,
nor mathematicians from trying to provide an adequate formalization. The same is
true of Feynman integrals, which to this day have not been formalized in complete
generality. Nothing like that happened to the work of Kermack and McCrea. Their
anticipation of some of the ideas of algebraic analysis was totally forgotten and the
developments that led to an adequate formalization of what they had in mind was
not influenced by their work.

The difference surely lies in the many applications of both the δ-function and
Feynman’s integral. Physicists realized they were too useful to be put on hold until
they could be rigorously explained to the mathematicians’ content. Nothing similar
happened to the work of Kermack and McCrea. To a pure mathematician of those
times, it must have seemed a rather strange sort of thing to study, with its quaint
mixture of analysis and noncommutative algebra. Moreover, most of the work on
noncommutative rings before the 1960s was concerned with structure results that
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would have very little to say about the algebra generated by p and q under the
relation qp − pq = 1. On top of this, let us not forget that those were the times
when algebraic structures were most often studied for their own sake, while the
study of microdifferential operators makes very little sense outside the framework
of searching for generalised solutions of partial differential equations. Finally, their
work was presented as a method to handle properties of special functions, a subject
that, as McCrea himself [30] points out, seemed to have exhausted itself at the
time.

Summing up, although this may seem at first to be a case of missed opportunity,
a deeper look suggests that it would have been very unlikely for anyone at the
time to see much of an opportunity in it. There is one final question that we may
ask, although no answer can be found in the evidence available: had the papers
by Kermack and McCrea been brought to the attention of the early developers of
algebraic analysis, would they have influenced them in any way?

9.5. Conclusion. In a ‘research lecture’ that took place in the autumn of 1930
at the University of Edinburgh, E. T. Whittaker presented a new method he had
devised for computing certain definite integrals. The method was based on the
use of contact transformations, a subject dear to Whittaker, who wrote its first
presentation in English in a chapter of his book Analytical Dynamics. However,
Whittaker’s proof of his theorem proved to be faulty, and this prompted two of his
auditors to attempt to provide a correct proof. The team consisted of a chemist
(Kermack) and a physicist (McCrea), both of whom worked in Edinburgh at the
time. Their solution made use of the newly invented algebra of quantum mechanics,
which turns out to be the noncommutative algebra generated by the operators
that describe position and momentum in quantum dynamics. As part of their
attempt they uncovered a number of concepts and results that are now part of
algebraic analysis: the study of linear partial differential equations from the algebro-
geometric point of view. Among these results, one finds several tools of the theory
of microdifferential operators, such as:

• the existence of quantized contact transformations associated to a given
contact (canonical) transformation;
• the fact that some of these transformations can be given as conjugation by

appropriate invertible operators;
• the relation between the solutions of two differential equations that are

connected by a quantized contact transformation.

These results are presented in the papers [24] and [25], which were written in what
was by then a very unrigorous language. No hypotheses are made concerning the
convergence of any of the series that come up in the paper, a problem that is com-
pounded by the difficulties inherent in defining convergent series of noncommuting
operators. Although the authors make clear that they are aware of at least some of
these problems, they always assume that their results hold as long as the required
hypotheses are satisfied. That such hypotheses actually exist one has to take on
trust, for they are never investigated.

Even though Kermack and McCrea anticipated a few of the ideas that make
up the present theory of rings of microdifferential operators, there is no evidence
that their work had any influence in their contemporaries, or at any later time.
Remarkable as their work is, it does not seem legitimate to argue that it is a case
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of missed opportunity in the sense used by Dyson in [15] for, at the time the papers
were published, there was no one who could have taken that opportunity. The
mathematical technology required to carry out the development of the theory would
only be created more than twenty years later. Moreover, the work was presented in
the context of the theory of special functions, at a moment when the focus in pure
mathematics was shifting to general function theory. This meant that no other
potential applications of these methods were explored, so the papers disappeared
from view leaving hardly a trace. To complicate matters, algebraists were beginning
their study of structures in the 1930s, and this mixture of noncommutative algebra
and analysis, with a touch of Hamiltonian mechanics, did not fit the mathematical
panorama that the leading mathematicians of those decades were composing. So
we seem to have, in these early applications of noncommutative algebra to linear
differential equations, a case of non-mathematicians stumbling upon very important
results, at a time when these results could not have been derived by standard
rigorous methods, even at a great cost of time and effort. That caused them to
be forgotten, until they were rediscovered, in a different context, more than twenty
years later.
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(2003), 23–28.
[36] P. Schapira, Mikio Sato, a visionary of mathematics, Notices AMS, 54 (2007), 243–245.

[37] P. Schapira, Masaki Kashiwara and algebraic analysis, in Algebraic Analysis and Around: In

Honor of Professor Masaki Kashiwara’s 60th Birthday (Advanced Studies in Pure Mathemat-
ics), World Scientific (2009).

[38] G. Temple, Edmund Taylor Whittaker, Biographical Memoirs of Fellows of The Royal Society

2 (1956), 299–325.
[39] B.L. van der Waerden, Sources of quantum mechanics, Dover Publications (1967).
[40] H.F. Weber, Ueber die Integration der partiellen Differentialgleichung ∂2u/∂x2 +∂2u/∂y2 +

k2u = 0, Math. Ann. 1 (1869), 1-36.

[41] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, fourth

edition, Cambridge University Press, Cambridge, (1999).
[42] G. N. Watson and E. T. Whittaker, A course of modern analysis, Cambridge University

Press, Fourth Edition (1963).

[43] E. T. Whittaker, On the solution of differential equations by definite integrals, Proc. Edinb.
Math. Soc. 2 (1931), 189–204.

Departamento de Ciência da Computação, Instituto de Matemática, Universidade
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